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Abstract 

Despite the great advantages of tidal lagoons, such as predictable renewable energy generation 

and flood risk reduction, tidal lagoons are expected to have an impact on the coastal and 

riverine environment. The uncertainties regarding the environmental impacts can potentially 

affect the development and influence the design of tidal lagoons. Therefore, it is desirable to 

fully assess their environmental impacts to evaluate the potential impacts associated with 

lagoons, and to mitigate any adverse impacts by improving the construction design and 

operation methods where necessary. A comprehensive study regarding the environmental 

impact of lagoons and their operation should be undertaken at the preliminary design stage and 

beyond. Furthermore, it is important to explore the accumulative impacts and the interaction 

of the conjunctive operation of the lagoons in different locations around the coast, which is 

regarded as an integrated potential effective tidal range energy scheme to provide continuous 

power. 

This research study involves developing a refined two-dimensional hydrodynamic model to 

provide an accurate assessment of the hydro-environmental impact and the interaction of tidal 

lagoons. Improvements are made through simulations of island wakes, which provides a similar 

scenario to the flow patterns around obstacle, such as lagoons, in a macro-tidal environment. 

Innovative refinements are also made to enhance the modelling accuracy of the hydro-

environmental process within and outside of a lagoon, including full momentum conservation 

between the subdomains and the independent operation of the turbines and sluice gate blocks. 

Three state-of-the-art tidal lagoon proposals, namely: West Somerset Lagoon (WSL), Swansea 

Bay Lagoon (SBL) and North Wales Tidal Lagoon (NWTL), are used as case studies in this 

research to investigate their impacts and hydro-environmental interactions.  

The results show that the operation of the West Somerset Lagoon slightly reduces the tidal 

range in the Bristol Channel and Severn Estuary. The changes in tidal elevation caused by the 

WSL and NWTL resulted in a loss of intertidal mudflats of up to 20 km2 in the Bristol Channel 

and Severn Estuary, while the decrease in the peak water elevations reduces the coastal flood 

risk. The maximum velocity in the inner Bristol Channel increases by about 0.25-0.75 m/s with 

the operation of WSL, which improves the water renewal capacity and increases the maximum 

suspended sediment concentration in the Bristol Channel and Severn Estuary, and consequently 

reduces the risk of hypernutrification and eutrophication. In contrast, the current designs for 

the SBL and NWTL schemes as modelled in thisstudy showed a decrease in the water residence 
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time by 4% and 45.7% in the lagoon area, respectively. The bed shear stress study and the 

indicative morphological modelling demonstrated potential erosion in the turbine wake region, 

influencing the general morphodynamics during lagoon operation. Furthermore, the presence 

of WSL is likely to cause sediment deposition at two sides of the lagoon impoundment, while 

increasing slightly the risk of scouring the seabed in the inner Bristol Channel.  

In the study of the conjunctive operation of WSL and NWTL, as well as WSL and SBL, the 

interactions between the lagoons were investigated, but they were found to be minor. The 

interactions between the lagoons are associated with the lagoon scale, location, tidal phase, et 

al., therefore a general conclusion could not be obtained. However, the feasibility of relatively 

continuous tidal power output is presented for the conjunctive operation of WSL and NWTL.
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Chapter 1 Introduction 

1.1 Research Background 

Climate change and extreme weather events linked with the rise of global temperatures have 

occurred around the world. It has been demonstrated that global temperature has risen more 

than 1°C since the pre-industrial period (1720-1800) (Hawkins et al., 2017), and this rise will 

accelerate in the future on long timescales. Furthermore, the latest research has indicated that 

meeting the established international goal set by the Paris Agreement of limiting temperature 

change to well below 2 °C is already challenging. Pursuing efforts towards limiting change to 

1.5 °C would require a more rapid and deeper energy system decarbonisation action in the next 

two decades (Gambhir et al., 2019).  

There is substantial evidence that a key driver of global warming is the rising level of 

atmospheric carbon dioxide (CO2), which could modulate the global temperature via the 

ógreenhouse effectô (Visser et al., 2016; Intergovernmental Panel on Climate Change (IPCC), 

2012). Since the First Industrial Revolution, human activity has generated large volumes of 

greenhouse gas by combusting fossil fuels. It is estimated that the main sources of greenhouse 

gas emissions (CO2) are electricity generation (26%), industry (19%), forestry (17%) and 

agriculture (14%) (Metz et al., 2007). Therefore, using renewable energy to replace fossil fuels 

is key to restricting the temperature rise to under the established limit (United Nations, 2012). 

Besides the environmental benefits, renewable energy also has a number of advantages for 

future development. First, the price competitiveness of renewable energy keeps growing: with 

the development of more energy-efficient equipment, better engineering work and part design, 

and the maturity of the market, the price of renewables is rapidly dropping. Second, renewable 

energy provides long-term certainty for its relatively long service life; last, national energy 

security could be strengthened with a diversified portfolio of energy assets, avoiding influences 

from market fluctuations and political factors. 

As the most populated country, China aims to reduce its carbon emissions per unit gross 

domestic product (GDP) by 60-65% by 2030 from the level of 2005; the target for the non-

fossil fuel share in total energy demand is 20% by 2030 (NDRC, 2016). In September 2020, 

the Chinese President announced the nationôs plan to hit peak emission before 2030 and carbon 

neutrality by 2060 (McGrath, 2020).  
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As one of the leading global promoters on reducing carbon emissions and deploying renewable 

energy, the United Kingdom (UK) government has set a series of ambitious targets for clean 

energy systems. In June 2019, the UK committed to reducing the UKôs net emissions of 

greenhouse gases by 100% relative to 1990 levels by 2050, which is the first net zero emissions 

commitment among major economies in the world (UK Government, 2019a). Prior to this 

target, the UK was aiming to reduce net greenhouse gas emissions by at least 80% of their 1990 

levels, also by 2050 (UK Government, 2019b). To achieve this target, the UK would need to 

take quick action to develop renewable energy that is efficient, economically viable and 

reliable. In the past decade, the proportion of renewable energy has kept rising. In 2017, 

renewables made up 27.9% of domestic electricity production (BEIS, 2018c), with wind power 

providing 50% of the utilised renewable resources (BEIS, 2018b). 

Developed countries have led the way in developing, promoting and deploying renewable 

energy, aiming at sustainable development and decarbonisation of their economies (Baldwin 

et al., 2017). For example, in June 2018, the EU established a new binding renewable energy 

target for 2030 of at least 32% of its total energy needs, while this target was 27% in 2014 (EU, 

2018). As one of the leaders in the EU, the Energiewende in Germany has declared that the 

whole country will abandon nuclear power and decrease green gas emissions by 80% by 2050 

(Renn and Marshall, 2016; Morris and Jungjohann, 2017). In recent years, lower-income 

countries have begun to express increased interest in and commitment to renewable energy 

(Gielen et al., 2019). The Indian government has increased its renewable energy target to 227 

GW by 2027, from a previous target of 175 GW by 2022 set several years ago (Gielen et al., 

2019).  

However, one of the noticeable features of currently developed renewable energy is the 

stochastic nature of its sources, that the power output is weather dependent (Uqaili and Harijan, 

2011). For example, a so-called ówind droughtô was caused by an exceptionally calm anti-

cyclonic weather system during July 2018 in the United Kingdom, which resulted in the overall 

wind power capacity dropping to less than half the normal annual capacity percentage in 2017 

(Vaughan, 2018). For national energy security, a diversified renewable energy portfolio is 

desirable to protect the country from disruptions and outages in any one sector. 

One of the most unexploited and vast renewable energy resources for the UK is tidal energy. 

Tidal energy could potentially produce up to 50 TWh/year in the UK, accounting for 48% of 

the total European tidal energy resource potential (Burrows et al., 2009b), which can supply up 
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to 29% of the UK demand relative to 2013 (DECC, 2014; Todeschini, 2017). Furthermore, the 

potential tidal energy development schemes in the UK are some of the few sites worldwide that 

are close to electricity users and the transmission grid (Burrows et al., 2009b). Tidal range 

energy, created by the rising and falling of tides, is regarded as one of the renewable sources 

that have the most prospective application potential. One significant advantage of tidal range 

energy over many other forms of renewables, e.g. wind and solar, is its almost perfect 

predictability over long time horizons. It is also more predictable than other kinds of marine 

energy such as wave energy which is partly a consequence of wind energy (Bahaj, 2011; 

Fraenkel, 1999). Therefore, incorporating power generated by tidal ranges into the power grid 

should be less challenging than incorporating less predictable sources. 

A Tidal Range Scheme (TRS) is capable of generating predictable energy from tides by 

utilizing a water head difference artificially generated by impounding water throughout a tidal 

cycle. Traditionally, tidal barrages have been the main focus of tidal range schemes due to their 

lower wall to basin size ratio, thereby reducing the civil engineering costs of the scheme (Xia 

et al., 2010b). However, the environmental impact of the tidal barrage is regarded as its greatest 

disadvantage (Rourke et al., 2010). By blocking the entire estuary, the operation of a tidal 

barrage can have adverse effects on a large area of the ecosystem by modifying water 

circulation, sediment behaviour, water quality, bird habitats and fish migratory passage 

(Hooper and Austen, 2013; Burrows et al., 2009a). In the alternative forms, tidal lagoons, 

which share the same well-developed construction and operation techniques as the tidal 

barrages, while having less environmental impacts, have attracted considerable attention. As 

tidal lagoons generally do not block major estuaries to the same extent as barrages, they tend 

to have reduced impacts on the estuarine environment, and potentially offer multifunctional 

features, such as flood risk reduction and significant amenity or leisure opportunities etc. 

(Hendry, 2016; Angeloudis and Falconer, 2017).  

1.2 Hydro-environmental Impacts of Tidal Range Scheme 

Most of the suitable locations for proposed lagoons are sites in complex ecosystems, so even a 

well-designed tidal lagoon would inevitably have an impact on the surrounding environment. 

For example, the La Rance barrage has been shown to have the effects such as enhanced 

muddiness on the seabed and raised productivity of the foreshore (Kirby and Retière, 2009). 

Although a tidal lagoon is different from a tidal barrage in the level of blockage, these two 
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forms of TRS generally share the same working principles and operation mode and thus 

produce comparable impacts. The operation of the lagoon will decrease the tidal range in the 

water impoundment area, which consequently reduces the water volume entering or leaving 

the planned lagoon area during each tidal cycle. These fundamental hydrodynamic changes 

will t hen profoundly affect the hydro-environmental conditions in the broadest sense for the 

surrounding region. 

A tidal lagoon affects sea levels within and around the impounded area due to its significant 

water volume storage, usually reducing the tidal range, which can lead to the shrinking of 

intertidal habitats and a decrease in flood risk (Xia et al., 2010b). For example, the proposed 

Severn Barrage could reduce the tidal range by 10% in the near-field downstream (Frau, 1993), 

and could continue to affect tidal elevation as far as 100 km seaward (Parsons Brinckerhoff 

Ltd, 2008b). The estimated potential loss of intertidal habitat area caused by the Severn Estuary 

Barrage ranges from 14,428 hectares (Sustainable Development Commission, 2007a) to 20,000 

hectares (Parsons Brinckerhoff Ltd, 2008b). Estuaries and coasts with large tides usually form 

an important component in the migration patterns of a wide variety of wading birds and 

waterfowl. Any pronounced loss of intertidal habitats can significantly restrict feeding 

opportunities for birds post-development (Kirby, 2010; Adcock et al., 2015). The specific 

impact on bird populations depends on the remaining size of the feeding area and the available 

feeding time, along with the abundance of prey. This impact might be crucial as the loss of 

feeding and breeding grounds associated with a tidal lagoon is detrimental to affected birds, 

and competition at the remaining intertidal habitats increases the mortality rate (Burton et al., 

2006; Goss-Custard et al., 2002). 

The tidal flow pattern and residual flows will also be modified around the tidal lagoon, and 

even minor changes in velocity magnitude may have a noticeable influence because the energy 

with the flow is proportional to the cube of the velocity (Hooper and Austen, 2013). The high-

energy water flows exiting from the turbines and sluice gates may cause local scouring in the 

outflow region (Wolf et al., 2009). In principle, alterations to the tide flow can significantly 

affect the suspended sediment transport and movement of bottom sediments in the estuary, 

thereby affecting the regionôs geomorphology, turbidity and benthic environments (Kadiri et 

al., 2012; Gao et al., 2013; Ahmadian et al., 2014a; Xia et al., 2010c).  

Water quality would be affected by many aspects of a TRS. For tidal barrages, a reduced tidal 

flushing rate is expected in the upstream area (Hooper and Austen, 2013), followed by 
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increased concentrations of dissolved nutrients (Parsons Brinckerhoff Ltd, 2008c) and 

dissolved oxygen levels (Kirby and Retière, 2009), and decreased salinity (Wolf et al., 2009). 

A reduced tidal flushing rate also means a lower water renewal capacity, which would hinder 

the dilution, transport and dispersal of nutrients and contaminants, probably failing to meet 

water quality standards (Evans, 2017). Phytoplankton biomass and primary production would 

be affected by the construction of the tidal lagoon; the increased dissolved nutrients would 

consequently benefit phytoplankton growth while changing water turbidity would also have an 

impact on phytoplankton production by influencing photosynthesis (Underwood, 2010). The 

change in phytoplankton biomass and production would in turn affect the food supply for the 

benthos and so influence the carrying capacity of intertidal areas for feeding shorebirds 

(Warwick and Somerfield, 2010). 

The tidal lagoon industry is still in a nascent stage, and there is a lack of environmental 

regulatory guidance specific to tidal lagoons. It is essential for developers to fully understand 

the impact of the scheme on the environment where the tidal lagoon is deployed and eliminate 

any doubt from influential stakeholders such as government bodies, regulators and 

conservationists to prevent further issues. However, the current modelling tools available to 

forecast the potential results of a tidal lagoon on the hydro-environment have been found to 

work less well than desired. This is due to the lack of experimental data on one hand, and needs 

of developing better-performing models on the other hand, as an environmental impact 

assessment would need a full consideration of a range of potential impacts of the proposed 

lagoons. 
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1.3 Research Aim and Objectives 

This research aims to enhance hydro-environmental modelling of tidal range structures, in 

order to more accurately assess their impacts and their interactions. The main aims of this 

research will be achieved by the following specific objectives: 

¶ To improve the representation of tidal lagoons in numerical models and apply the 

improved model to the West Somerset Lagoon (WSL), North Wales Tidal Lagoon 

(NWTL) and Swansea Bay Lagoon (SBL). Improvements include full momentum 

conservation between the subdomains and the independent operation of blocks of 

turbines and sluice gates. 

¶ To investigate the flow pattern around an obstacle in a macro-tidal environment to 

improve the understanding of lagoon modelling. 

¶ To develop and validate two-dimensional hydrodynamic models for Severn Estuary and 

Bristol Channel (SEBC) and Continental Shelf (CS) to provide the baseline hydro-

environmental parameters.  

¶ To explore the effects of an open boundary location on the hydrodynamic impact of the 

tidal lagoon. 

¶ To study the accumulative hydrodynamic impacts and the interaction of tidal lagoons.  

¶ To investigate the hydro-environmental impacts of tidal lagoons, including assessments 

of the intertidal mudflats, water renewal capacity, sediment transport, nutrient 

concentration and phytoplankton biomass. 
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1.4 Novelty and Contribution 

The novelty and contributions of this research are mainly concentrated in the following aspects: 

1. Modelling tidal lagoons with multi-blocks of turbines where every block is operated 

independently. Using individual operation schemes for each turbine block in the modelling and 

optimisation of the lagoon has led to a closer match between the power output predicted by the 

0D and 2D models.  

2. Improved momentum conservation was included and tested in the model. This refinement is 

particularly important for the design of lagoons and identifying the interaction of the jets and 

lagoon structure, and studying morphological changes and water renewal capacity.  

3. This thesis provides a comprehensive study on the hydro-environmental impact of two new 

proposed tidal lagoons in the UK, i.e., WSL and NWTL. For example, the investigation of 

water renewal capacity evolution for the water outside of a tidal lagoon and the spatial 

distribution of the residence time inside the lagoon basin provides a comprehensive 

understanding of the water renewal exchange throughout the lagoonôs operation. Furthermore, 

although some research has used the screening model to study the influence of TRSs on 

phytoplankton biomass exchange etc., this study provides a more accurate prediction about 

phytoplankton biomass exchange. This is because the quantitative change of water residence 

time and the suspended particulate matter concentration changes were assessed based on the 

residence time and the suspended sediment predicted changes carried out as a part of this 

research.   

4. The modelling of the lagoon was improved by modelling an island, as a natural obstruction, 

and using the turbulence model that showed the best performance for modelling the island. 
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1.5 Thesis Structure  

This thesis is organised into eight chapters as detailed as follows: 

Chapter 1 introduces the research background and motivation for this research study. 

Chapter 2 provides an overview of previously published research related to this thesis, studying 

the tidal range scheme (TRS) both as a commercial industry and as an area of academic 

research. The background of tidal energy is discussed, followed by a review of TRS 

development around the world. A comprehensive investigation is conducted for the state-of-

the-art numerical modelling method of TRS and its environmental impacts.   

Chapter 3 describes the governing equations and associated numerical methods used in the 

hydrodynamic model, TELEMAC-2D. The developments and validations of two 

hydrodynamic models, namely the SEBC and CS models, are also presented in this chapter.  

Chapter 4 investigates the island wake evolution in the macro-tidal environment to provide the 

necessary knowledge of flow structures around the tidal lagoon and improve hydrodynamic 

modelling.  

Chapter 5 explains the parameterisation methodology of the lagoon structure components and 

their operation schemes, which are applied to three lagoon cases: West Somerset Lagoon 

(WSL), Swansea Bay Lagoon (SBL) and North Wales Tidal Lagoon (NWTL). 

Chapter 6 presents the hydrodynamics impacts of lagoons on the surrounding waters, including 

the lagoon operation on the tidal harmonic constituents, tidal elevation and tide speed change. 

This chapter then explores the hydro-environmental impact assessments of tidal lagoons, 

including the intertidal mudflat area, renewal capacity of surrounding water, phytoplankton 

biomass study and the suspended sediment transport study.  

Chapter 7 investigates the effects of open boundary location on the far-field hydrodynamics of 

tidal lagoon and the interaction between lagoons.  

Chapter 8 presents the conclusions from this research and recommends the areas for future 

research. 



Chapter 2 Literature Review 

 

9 
 

Chapter 2 Literature Review 

2.1 Tide Theory  

Tide is defined as the oscillation of the sea level relative to the land. The physics and driving 

force of tides have long been understood - the tide-generating forces encompass the rotation of 

the earth and the gravitational force of the Sun and the Moon (Charlier and Finkl, 2009). Most 

tides oscillate twice a day, called semidiurnal tides; diurnal tides occur in some geographical 

areas, involving one high and low tide daily. The tidal day for the semidiurnal tide is 1.035 

times as long as the solar day, i.e., each tidal cycle typically takes an average of just over 12 

hours. The period of a full cycle of semidiurnal tides is over 14 days, with the highest water 

level, or spring tide, occurring a few days after either a new or a full moon; the lowest water 

level appears at a neap tide, which occurs shortly after the first or last quarter moon. The spring-

neap tide is controlled by the complex superimposed impact of the Earth-Moon-Sun system, 

with the spring tide occurring when the Moon and the Sun align their gravitational forces; when 

the Moon and Earth are aligned vertically relative to the Sun and Earth, the superimposed tidal 

forces partially offset each other resulting in the neap tide, as shown in Figure 2.1. 

  

Figure 2.1: Relationship between the position of the Moon and the tidal range. 

https://en.wikipedia.org/wiki/Diurnal_cycle
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However, the distribution of global tide shows a noticeable spatial difference. The tide is driven 

by astronomical forces but is also significantly affected by the coastal geomorphology, coastal 

water depth and ocean floor topography. For example, the tidal range in the open ocean is 

relatively small but will grow near the shore, especially in the region of semi-enclosed seas and 

estuaries, because of the resonance and convergence effect of coastline (Pugh, 1996). For 

example, The tidal range in the Bay of Fundy, Canada, could reach 16.3 m during the spring 

tide, which is the largest tidal range in the world; the second largest tidal range occurs in Bristol 

Channel, UK, approaching 14.2 m (Greaves and Iglesias, 2018). A coast is classified based on 

the tidal range as microtidal, mesotidal and macro-tidal if the tidal range is below 2 m, 2-4m 

and exceeding 4 m, respectively (Charlier and Finkl, 2009).  

The analysis of observed tide records and the harmonic analysis has been used to make accurate 

predictions of sea water levels (Pugh, 1996). Harmonic constants can be calculated through the 

analysis of periodic sea-level change data collected at a location. The tide predictions can be 

described mathematically as: 

ὤὸ  ὥὧέί‫ὸ  ‰ ȟ (2.1) 

where Z is the free surface level at time t, and ὥ, are the amplitude, angular frequency ‰ ,‫ 

and phase of the ith harmonic component, respectively. More harmonic components accounted 

for in the Fourier analysis result in more accurate water level predictions. Doodson (1921) 

identified 388 different harmonics components. However, seven or eight components are 

sufficient in most cases. For example, Table 2.1 lists the main tidal constituents at the mouth 

of the Severn Estuary (Vazquez and Iglesias, 2015).  
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Table 2.1: Tidal constituents at the mouth of the Severn Estuary (Vazquez and Iglesias, 2015). 

Constituent Description 
Amplitude 

(cm) 

Phase 

(Degree) 

ὓ  Principal lunar semidiurnal 235.24 156.87 

Ὓ Principal solar semidiurnal 84.17 201.21 

ὔ  Larger lunar elliptical semidiurnal 44.79 138.48 

ὑ Lunisolar semidiurnal 24.45 195.80 

ὑ Lunar diurnal 6.77 127.34 

ὕ Lunar diurnal 6.70 351.17 

ὖ Solar diurnal 2.23 121.81 

ὗ Larger lunar elliptical diurnal 1.95 305.66 

ὓ  
Shallow water overtides of principal 

lunar 
3.69 290.99 

For any marine site, the time series of tide elevation could be decomposed into the tidal 

harmonics using harmonic analysis. However, a portion of the tidal signal is beyond the range 

of astronomical tide because of meteorological forcing and other non-linear effects. The 

meteorological tide includes the tide level oscillations caused by winds and atmospheric 

alteration. During storms, high air pressure exerts a force on the surroundings and corresponds 

to low sea level, while low atmospheric pressure can cause a rise in tidal level higher than the 

normal astronomical tidal range, which causes storm surge (Wadey et al., 2015). For this 

reason, pre-treatment should be carried out on the time series of tide levels before harmonic 

analysis to remove the non-astronomical factors (Thomson and Emery, 2014). 

2.2 Tidal Energy 

Tidal energy is the power produced by the surge of sea waters during the rise and fall of tides, 

or the energy from moving tidal currents. The significant advantage of tidal energy is the 

predictability over the other types of renewable energy, such as wind energy or solar power, 

which allows the future energy-generating potential to be accurately assessed, regardless of 

unexpected surges and other meteorological impacts (Rourke et al., 2010). There are two major 
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categories of tidal energy: tidal stream energy and tidal range energy, which correspond to 

different methods of energy harnessing, as seen in Figure 2.2. 

 

Figure 2.2: Classification of tidal power technologies (Elliott et al., 2018). 

However, compared to the rapid growth of wind-turbine and solar energy applications, the 

development of tidal energy schemes is much slower because of the relatively high capital cost 

of a tidal energy project (Hendry, 2016). Thus, tidal power is still approaching commercial 

maturity. However, with the fast-growing commercial investments and exploratory 

deployments, the economic and environmental costs of tidal energy projects are expected to be 

mitigated in the future. 

2.2.1 Tidal Stream Devices 

A tidal stream generator takes advantage of the Kinetic energy of moving water to drive the 

generator, in a similar way to wind turbines that use wind for power. However, the ten times 

higher dynamic pressure in tidal flow and the unsteadiness flow in the marine environment lead 

to the different designs in the tidal turbine and wind turbine (Adcock et al., 2021). Additionally, 

locations where the flow is restricted, e.g. narrow channels, the tip of peninsulas, contain higher 

energy density, which is beneficial for energy extraction (Adcock et al., 2015).  

The kinetic tide stream energy through a cross-section perpendicular to the flow direction per 

unit time is given by the following equation: 

ὖЏ „”ὠὃ, (2.2) 

where ὠ is the magnitude of the flow velocity averaged over the section, ὃ is the surface area 

of the cross-section, ” is the density of seawater, and „ is the energy transform coefficient 

(Carballo et al., 2009).  
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A tidal stream turbine operates with the same working principles as a wind turbine; thus, most 

of the fundamental technology used in the early development phases of a tidal stream turbine 

is derived from the wind turbine industry. The tidal turbine blades are shaped with an aerofoil 

cross-section (Roberts et al., 2016). When the tidal flow passes across the blade, a pressure 

gradient across the two surfaces of the blade occurs to drive the generator.  

The successful deployment of tidal stream turbines is related to many factors, including local 

tide velocity, turbulence, bathymetry, water column velocity profile and depth, seabed 

mounting, shipping route and marine animals. Different from the tidal range energy schemes, 

the tidal stream turbines do not block the whole passage of the tide flow. Thus, the 

environmental influence from tidal stream turbines is assumed to be easier to control, compared 

with the tidal range energy structure. However, the higher energy cost of tidal stream energy is 

one of the key challenges for further development of TRSs, as shown in Table 2.2. 

Table 2.2: Levelized cost estimates for electricity with different sources (Astariz et al., 2015; Poyry 

Consultants, 2014). 

Source Levelized cost estimates (/MWh) 

Tidal lagoon 105 - 175 

Tidal stream  190 

Offshore wind 165 

Wave 325 

Nuclear (pressurized water reactor) 49.96 

Combined cycle gas turbine 43.17 

Coal  36.59 - 55.76 

Furthermore, it is understood that the profitability of ocean energy projects is heavily reliant 

on the site conditions, e.g. the upstream tide velocity and the bathymetry (Bahaj, 2011; Greaves 

and Iglesias, 2018), and also technological advancements and maturity of the type of energy 

project. 

2.2.2 Tidal Range Structures (TRS) 

Tidal range energy refers to the gravitational potential energy that exhibits a large difference 

in water height between the high tide and low tide (Baker, 1991). To utilise this kind of energy, 

a semi-enclosed construction, like a tidal barrage or lagoon, is required in the region to establish 

a water head difference between the two sides of the embankment as the tidal level rises and 

falls outside of the impoundment area. Eventually, the artificial water head difference forces 

the tide to flow through the turbine tunnel and drive the turbine-generator groups. The potential 
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energy yield that is extracted from the tidal range schemes is proportional to the plan 

impoundment area and the square of the water head difference:   

Ὁ ”ὃὫὬ, (2.3) 

where ” is the density, A is the area of the basin, g is the acceleration due to gravity, and h is 

the water head difference (Tousif and Taslim, 2011). Equation (2.3) demonstrates that the key 

to harnessing the tidal range energy is to contain large volumes of water with a large 

impounding area and high tidal range.  

A barrage usually stretches across the estuary (Sustainable Development Commission, 2007b), 

while a tidal lagoon is an artificial coastal impoundment that is attached to the coastal line or 

is completely offshore, as seen in Figure 2.3. The primary difference between them is whether 

the estuary is completely or partially blocked. Tidal range schemes have proven successful in 

different countries (Waters and Aggidis, 2016a). This could support the development of 

coastally attached tidal or offshore tidal lagoons. Offshore tidal lagoon which is completely 

self-contained and independent of the shoreline, is thought by researchers to have less 

environmental impacts (Cousineau et al., 2012).  

 

Figure 2.3: Conceptual graphs of a tidal barrage and a tidal lagoon (Elliott et al., 2018). 

2.2.3 Global TRS Development 

The primary requirements in TRS development are adequate tidal range and suitable coastal 

lines, which lead to a cost-effective site. Furthermore, environmental impact and easy power 

grid absorption should also be considered. Thus, not every site with sufficient tidal range is a 

potentially ideal location for TRS deployment. To gain a general picture of the TRS 
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development, the existing and potential TRS designs and the developing strategy in different 

countries are discussed as follows: 

2.2.3.1 United Kingdom 

Despite no commercial development of TRS yet in the United Kingdom (UK), its research on 

TRS has been at the forefront worldwide. The available tidal range energy in the UK that can 

be harnessed by both tidal barrages and tidal lagoons is 121 TWh/year (Estate Crown, 2012), 

which accounts for 35.7% of the total electricity production in 2015 (BEIS, 2018a). Thus, the 

UK has the potential to generate a reasonable proportion of renewable electricity from tidal 

range energy, as shown in Figure 2.4. 

 

Figure 2.4: Summary of tidal range resource of the UK (Sustainable Development Commission, 

2007b). 
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The Bristol Channel and Severn Estuary comprise the area most thoroughly investigated 

regarding TRS development (Charlier and Finkl, 2009), commonly referred to as the Severn 

Barrage. Implementing a tidal barrage in the Severn Estuary has been debated for many years, 

with numerous feasibility studies. The Bondi Committee investigated six possible barrage 

locations, proposing concrete powerhouse spans from Brean Down to Lavernock Point with a 

length of 16 km (Bondi, 1981). The Shoots Barrage (or Hooker Barrage) was published by 

Parsons Brinckerhoff in 2006 and discusses a smaller barrage located just below the Second 

Severn Crossing. In 1989, the Bondi Committeeôs 1981 plan was supported by the Severn Tidal 

Power Group (STPG), but with an enlarged turbine installation. The STPG plan is the most 

scrutinised Severn Barrage proposal and, thus, is usually regarded as the original Severn 

Barrage (Falconer et al., 2009), the configuration of which is given in Figure 2.5.  The barrage 

would contain 216 40-MW turbines, achieving a total of 8,640 MW during the peak flow and 

providing power of 17 TWh/year. This design is expected to have a long lifespan, ranging from 

minimum 120 to 200 years with maintenance (Severn Tidal Power Group, 1989). 

 

Figure 2.5: Configuration of STPG Barrage (Severn Tidal Power Group, 1989). 

Even with the predictable and huge source of sustainable energy from Severn Barrage, the 

potential disadvantages include high costs of construction and produced energy and 

environmental risk. The Severn Barrage proposals have then fallen out of favour, and the 
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attention of the public and academia has shifted towards the tidal lagoons for their smaller 

hydro-environmental impact and larger output power per unit area enclosed (Waters and 

Aggidis, 2016a). Tidal lagoons have been considered in the east side of the Irish sea and the 

Bristol Channel, including the Swansea Bay Lagoon, Newport Lagoon, Cardiff Lagoon, 

Newport Lagoon, Bridgewater lagoon, West Somerset lagoon and North Wales tidal lagoon, 

etc. 

2.2.3.2 France 

The Rance Tidal Power Station located on the estuary of the Rance River in Brittany, France, 

is the first such project that has been successfully deployed in the world. A 720 m long barrage 

blocks the Rance river, capturing a 22 ËÍ basin area (Rtimi et al., 2021). Twenty-four 10-

MW Kaplan bulb turbines contribute to a total output of 240 MW and annual production 

roughly 480 GWh (Andre, 1976). The turbines operate on a bidirectional cycle, producing 

power on both the ebb and flood tides, and can also be used as pumps to enhance the water 

head difference (Waters and Aggidis, 2016a). Furthermore, the embankment also works as a 

road linking the sides of the river, improving local transportation and introducing a valuable 

tourist attraction. 

 

Figure 2.6: The Rance River Barrage, Brittany, France (Wikipedia, 2021). 

The barrage has been in operation for more than 50 years without requiring significant repair 

on the turbines (Charlier, 2007), and the electricity generation remains stable meeting 
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expectations. However, the environmental impacts have gotten progressively worse since its 

construction. The estuary was completely blocked for three years during construction, 

damaging the local marine ecosystem. In operation, a strong water jet near the turbine and 

sluice gates results in scour near the barrage (Charlier and Finkl, 2009).  

The Rance River Barrage was regarded as a pathfinder in France to explore the future energy 

policy. Although the barrage is considered a success, Franceôs energy strategy was re-oriented 

towards nuclear power.  

2.2.3.3 Canada 

With the largest tidal range in the world of 16 m during spring tide (Etemadi et al., 2011), the 

Bay of Fundy is an attractive location for potential TRS projects due to its natural advantage 

and proximity to the fast-developing New England market. In 1984, the Annapolis power plant 

was constructed in this area (Pelc and Fujita, 2002). This scheme hosts the largest Straflo 

turbine in the world with unit power of 20 MW, producing 50 GWh of electricity per year with 

ebb generation (Todeschini, 2017). In addition, the plant acts as a flood defence and provides 

a vital transport link (Waters and Aggidis, 2016a).  

 

Figure 2.7: Annapolis station, on the Bay of Fundy in Nova Scotia, Canada (Brad, 2013). 

After the implementation of the Annapolis power plant, interest in tidal lagoons in the Bay of 

Fundy has risen. Delta Marine Consultants (DMC) have assessed the feasibility of constructing 



Chapter 2 Literature Review 

 

19 
 

tidal lagoons in the upper Bay of Fundy in 2006 (Delta Marine Consultants, 2007). Various 

plant layouts were investigated by DMC, and two types of lagoons were chosen for further 

study, as shown in Figure 2.8. One option is an offshore lagoon with an 11.9 km long 

embankment detached from the shore that encloses 12 ËÍ circular embankment; another is a 

coastal lagoon, which has a 24 ËÍ impoundment formed between the 10.2 km long 

embankment and the existing shoreline (Cornett and Cousineau, 2011; Cornett et al., 2013).  

 

Figure 2.8: Schematisation of offshore and coastal lagoons (Cousineau et al., 2012). 

2.2.3.4 South Korea 

The Sihwa Tidal Barrage of South Korea is the latest large TRS in the world, although the 

initial purpose of this project is not for renewable energy generation. In 1994, the South Korea 

government constructed Sihwa Lake as a land reclamation project. The 43.8 km² artificial lake 

has a 12.7 km long seawall at Gyeonggi Bay. The purpose of Sihwa Lake was to reclaim land 

for the nearby metropolitan area, flooding defences and secure irrigation water (Bae et al., 

2010). However, water quality deteriorated greatly once the project finished as a result of the 

cut-off of tidal currents and the pollution from nearby industries (Park, 2007). To improve the 

water quality, authorities began in 1997 to periodically open the sluice gates to flush the basin 

with circulating seawater. However, seawater circulation through the sluice gates alone was 

not sufficient. After a feasibility study, the government decided to build a tidal power plant at 

the site, which was estimated to double the seawater circulation (Cho et al., 2012).  










































































































































































































































































































































































































































































































